

ABOUT US (\(\sigma \)

SUR-SEAL LINERS is a specialty manufacturer that fabricates flexible drop-in liners for corrosion control in tanks, pits, sumps, and both primary and secondary containment areas. With over 25+ years in both the liquid and dry bulk storage tank industry, SUR-SEAL LINERS offers comprehensive and competitive solutions for any project.

SUR-SEAL

FEATURES AND BENEFITS

Shelf-stocked bulk material for faster production, delivery and emergency response.

Engineered in house for your specific product and tank. You'll never find us using off-the-shelf liners.

Tried and true rope-hem fabrication for attaching and battening to tank sidewall.

Floor fabrication (in-factory for factory-controlled welding and fabrication) NOT IN THE FIELD or ELEMENTS OF WEATHER.

Controlled packaging and shipping for easier tracking and installation at every phase.

100% of SUR-SEAL LINERS are fabricated in-house under our complete quality assurance standards and specification.

Contact Us
216-206-7723
www.sursealliners.com
sales@sursealliners.com

PROPERTY TEST METHOD								
Base Fabric Type Base Fabric Weight	ASTM D 751	Polyester 6.5 oz/yd2 nominal (220 g/m2 nominal)						
Thickness	ASTM D 751	30.0 mils nominal (0.76 mm min.)						
Weight	ASTM D 751	30.0 ± 2.0 oz/yd2 (1017 ± 2 g/sq. m)						
Tear Strength	ASTM D 751 Trap Tear	40/55 lb. min. (175/245 N min.)						
Breaking Yield Strength	ASTM D 751 Grab Tensile	550/550 lb. min. (2448/2448 N min.)						
Low Temperature Resistance	ASTM D 2136 4hrs-1/8in Mandrel	Pass @ -30o F (Pass @ -34o C)						
Dimensional Stability Hydrostatic	ASTM D 1204 212oF/100o C-1 hr.	0.5% max. each direction						
Resistance Blocking Resistance Adhesion-Ply	ASTM D 751 Method A	800 psi min. (5.51 MPa min.)						
Adhesion- Heat Welded Seam	ASTM D 751 180o F/82o C	#2 Rating max.						
Dead Load Seam Strength	ASTM D 413 Type A	15 lb./in. min. or film tearing bond (13 daN/5 cm						
		min. or FTB)						
Bonded Seam Strength	ASTM D 751 Dielectric Weld	40 lb./2in. min. (17.5 daN/5 cm min.)						
Abrasion Resistance	ASTM D 751 4-Hour Test	2000 cycles min. before babric exposure, 50 mg/100						
		cycles max. weight loss						
Weathering Resistance	ASTM D 751 Procedure A/ Grab Test	8000 hours with no appreciable change, stiffening,						
	Method	or cracking of coating						
Water Absorption	ASTM D 3389 H-18 Wheel 1 kg Load	0.025 kg/m2 max. @ 70 deg. F						
Wicking	ASTM G 153	1/8 in. max.						
Bursting Strength	ASTM D 471/ Section 12 7 Days	750lb. min.						
Puncture Resistance	ASTM D 751 ASTM D 751 Ball Tip	275lb. min (1200 N min.)						
	ASTM D 4833 ASTM D 696							
Coefficient of Thermal Expansion/Contraction	FTMS 101C Method 2031	8x 10-6 in/in/o F max. 1/4x10-5 cm/mc/o C max.						
Environmental/Chemical Resistance	ASTM D 741 7-day Total Immersion	See Chemical Resistance Table*						
Properties	with Exposed Edges							

Contact Us **216-206-7723**

CHEMICAL/ENVIRONMENTAL RESISTANCE

PART 1 - XR-5® FLUID RESISTANCE GUIDELINES

The data below is the result of laboratory test and is intended to serve only as a guide. NO performance warranty is intended or implied. The degree of chemical attack on any material os governed by the conditions under which it is exposed. Expsure time, temperature, and size of the area of exposure usually varies considerably in application, therefore, this table is given and accepted at the user's risk. Confirmation of validity and suitablility in specific cases should be obtained.

When considering for specific applications, it is suggested that a sample be tested in actual service before specification. Where impractial, tests should be devised which simulate actual service conditions as closely as possible.

EXPOSURE	RATING	EXPOSURE	RATING
AFFF Acetic Acid (5%) Acetic Acid (5%) Ammonium Phosphate Ammonium Sulfate Antifreeze (ethylene glycol) Animal Oil Aqua Regia ASTM Fuel A (100% Iso-octane) ASTM Oil #2 (Flash pt. 240° C) ASTM Oil #3 Benzene Calcium Chloride Solutions Calcium Hydroxide 20% Chlorine Solution Clorox Conic. Ammonium Hydroxide Corn Oil Crude Oil Diesel Fuel Ethanol Ethyl Acetate Ethyl Alcohol Fertilizer Solution #2 Fuel Oil #3 Fuel Oil Futural Gasoline Glycerin Hydraulic Fluid-Petroleum Based Hydraulic Fluid-Phosphate Ester Based Hydrocarbon Type II (40% Aromatic) Hydrofluoric Acid (50%) Hydrofluoric Acid (50%) Hydrofluoric Acid (50%) Hydrofluosilicic Acid (30%) Isoprophyl Alcohol Ivory Soap Jet A	A B C T T A A X A A A A A A A A A A A A A A A	JP4- Jet Fuel JP5- Jet Fuel JP8- Jet Fuel Kerosene Magnesium Chloride Magnesium Hydroxide Methanol Methyl Alcohol Methyl Ethyl Ketone Mineral Spirits Naphtha Nitric Acid (5%) Nitric Acide (50%) Perschloroethylene Phenol Phenol Formaldehyde Phosophoric Acid (100%) Phthalate Plasticizer Postassium Chloride Potassium Sulphate Raw Linseed Oil SAE-30 Oil Salt Water (25%) Sea Water Soium Acetate Solutions Sodium Hydroxide (60%) Sodium Phosphate Sulphuric Acid (50%) Toluene Tansformer Oil Turpentine Urea Formaldehyde UAN Vegetable Oil Water (200° F) Xylene	RATING A A A A A A A A A A A A A A A A A A A
		Zinc Chloride	Î

Ratings are based on visual and physical examination of samples after removeal from the test chemical after the samples of Black XR-5 were immersed for 28 days at room temperature. Results represent ability of material to retain its performance properties when in contact with the indicated chemical.

Rating Key

- A Fluid has little or no effect
- B Fluid has minor to moderate effect
- C Fluid has severe effect
- T No data likely to be acceptable
- X No data not likely to be acceptable

MATERIAL SUPPLIER

Sur-Seal Liners Material Supplier

NSF International Certifies that the products appearing on this Listing conform to the requirements of NSF/ANSI Standard 61 - Drinking Water System Components - Health Effects

Seaman Corporation 1000 Venture Boulevard Wooster, OH 44691 United States 330-262-1111

Facility: Bristol, TN

Protective (Barrier) Materials

Trotective (Barrier) Material						
Water	Water					
	Contact				_	
Trade Designation Size			Restriction		Temp	Material
T to						
Liners		OT D			DITCENT	
$3024 \text{ XR-5}^{\circ} \text{ PW Tan} >= 50 \text{ gal.}$			CLD		23	PVCEN
3024 XRTM-3 PW Tan >= 500 gal.			CLD		23	PVCEN
3522 XR3 PW Black >= 500 gal.			CLD		23	PVCEN
3522 XR3 PW Marine Blue/Marine Blue >= 500 gal.		CLD		23	PVCEN	
6730 XRTM-3 PW Black >= 500 gal.			CLD		23	PVCEN
6730 XRTM-3 PW White/Black >= 500 gal.			CLD		23	PVCEN
8130 XR-5° PW White/Black >= 50 gal.		CLD		23	PVCEN	
8130 XRTM-3 PW Black >= 500 gal.			CLD		23	PVCEN
8130 XRTM-3 PW Black/Marine Blue >= 500 gal.			CLD		23	PVCEN
8130 XRTM-3 PW Black/XR-5° Gray >= 500 gal.		CLD		23	PVCEN	
8130 XRTM-3 PW Marine Blue/Marine Blue >= 500 gal.		CLD		23	PVCEN	
8130 XRTM-3 PW White >= 500 gal.			CLD		23	PVCEN
8130 XRTM-3 PW White/Black >= 500 gal.			CLD		23	PVCEN
8130 XRTM-3 PW White/Marine Blue >= 500 gal.			CLD		23	PVCEN
8138 XRTM-3 PW Black >= 500 gal.			CLD		23	PVCEN
8138 XRTM-3 PW White/Black >= 500 gal.			CLD		23	PVCEN
8142 XR-5° PW DC7 >= 50 gal.			CLD		23	PVCEN
8142 XR*-5 PWR MS402/DC7 Tan/Black >= 250,000 gal.		CLD		23	PVCEN	
8228 XR*-3 PW DC9/DC7 Marine Blue/Black >= 500 gal.		CLD		23	PVCEN	
8228 XRTM-3 PW Black >= 500 gal.			CLD		23	PVCEN
8228 XRTM-3 PW White/Black >= 500 gal.			CLD		23	PVCEN
9146 XR-5° PW White/White >= 50 gal.			CLD		23	PVCEN

